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Introduction

The equation of time quantifies the difference between time measured by a sundial and
time measured by a mechanical clock. That this difference exists has been known since as-
tronomers began making these measurements and comparing them. Moreover, since Newton
showed how planetary orbits could be analyzed mathematically, it has been possible to cal-
culate the difference as well. However, the calculation is complex and can not be represented
by a simple, explicit analytical expression. The purpose of this work is to provide some
asymptotic approximations to the basic relations and show how they lead to a simple yet
accurate expression for the equation of time.

Solar Time and Sidereal Time

An observer fixed on the earth sees the sun and stars moving from east to west across the
sky as a result of the rotation of the earth about its polar axis. The angular position of
these celestial bodies is measured with respect to the meridian, which is that great circle
passing through both the pole and the observer’s local vertical. We call the angle between
the great circle passing through the pole and the body, and the observer’s meridian, the
hour angle of the body. As the hour angle increases we say that time passes.

Now the sun, on any two successive transits of the meridian (this time interval defines a
solar day), does not appear in the same position relative to the vernal equinox (a point
in the fixed starfield). On its second transit the sun will have advanced eastward along
the plane of the ecliptic (see Fig. 1.) by almost one degree, so that after approximately
n = 365.24 such transits (this time interval defines a tropical year) it will have returned to
its original position. The angle between the sun and the meridian, the hour angle of the
sun H, is proportional to the local solar time and satisfies the equation

H = LST − α (1)

1



Ecliptic Plane

Equatorial PlaneVernal Equinox

Pole

φ

Horizon Plane

Local Vertical

α
θ

λ

Meridian

Figure 1: Geometry on the celestial sphere as seen by an observer fixed on the earth at
latitude 90◦ − θ. The sun is the point on the ecliptic at latitude (the angular distance from
the vernal equinox in the ecliptic plane) λ.

where the angle LST, proportional to the local sidereal time, is the hour angle of the vernal
equinox, while α is the right ascension of the sun. Note that, as shown in Fig. 1., α, is the
angle between the great circle through the pole and the vernal equinox, and the great circle
through the pole and the sun. The hour angle, LST, which is not shown in Fig. 1., is the
angle between the great circle through the pole and vernal equinox, and the meridian (two
successive transits of the meridian by the vernal equinox defines a sidereal day). Equation
(1) follows from Fig. 1. on noting that both hour angles increase toward the west while the
right ascension increases toward the east.

We introduce solar time tS and sidereal time, t, by making them proportional to H and
LST respectively. In equation form tS = ktSH and t = kt LST, where ktS and kt are
dimensional constants whose dimensions are time divided by angle [t/� ]. These constants
are evaluated through the definition of time standards; for example, tS = tSD = 1 solar day
when H = 2πk� , and t = tD = 1 sidereal day when LST = 2πk� . Substituting these values
into the definitions produces

tS =
H

2πk�
tSD t =

LST
2πk�

tD (2)

Note that k� = 1 rad = 180/π deg = 1/2π rev is the dimensional constant that defines
angle in terms of the ratio of the arc length of a circle to its radius. Then in terms of the
times and standards defined in Eqs (2), Eq (1) can be written as

2πk�
tS
tSD

= 2πk�
t

tD
− α (3)

This equation relates solar time to sidereal time. For t = tD, we get from substitution,
tS = (1 − α/2πk� )tSD. Since α varies nonuniformly throughout the year, this says that
each sidereal day corresponds to a different number of solar days.

In one tropical year tS ≡ tY = n tSD, the sun completes one circuit on the ecliptic, α = 2πk� ,
so we get from substituting into Eq (3) and solving, t ≡ tY = (n + 1)tD. In this way we get
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a conversion equation between the scales of the two time measures

tY = 1yr = ntSD = (n + 1)tD (4)

We see from Eq (4) that solar time runs slower than sidereal time since a solar second
is longer than a sidereal second. Indeed, Eq (4) tells us that in one year sidereal time
accumulates an entire day, 24 hours, more than solar time. Based on this, we define an
average, 1 mean solar day = tMSD = (1/365.24) year = tY /n.

We can rewrite Eq (3) by using Eq (4) to eliminate both tD and tSD. This gives

2πnk�
tS
tY

= 2π(n + 1)k�
t

tY
− α = 2πk�

(
n

t

tY
+

t

tY

)
− α

Then using the earth’s rotation rate in the form, fE = 2πnk� /tY = 2πk� /tMSD, we get

tS − t = ∆t =
2πk� t/tY − α

fE
(5)

Equation (5) is the equation of time; in it both tS and t are measured in the same units, mean
solar days. Accordingly, we note that if α increased linearly with time, α = 2πk� t/tY , there
would be no more difference between solar time and sidereal time than there is between a
foot and a meter. However, as we mentioned before this is not the case; α varies throughout
the year due to the sun’s nonuniform motion around the earth (as seen by an earth fixed
observer) in the plane of the ecliptic and due to the difference between the equatorial
and ecliptic planes. These effects have been quantified by measurements of α(t) by many
astronomers from ancient times to the present. Their results are readily available in the
form of tables and graphs. In addition to evaluating ∆t by measurements, it can also be
calculated by evaluating α(t) from the equations for planetary motion that follow from
Newton’s laws.

Note that the first term on the right side of Eq (5) is the time indicated by a theoretical
mean sun; this is the time measured by a mechanical clock that beats 24 hours in one mean
solar day. The second term is the corresponding time indicated by the true sun, which is
the time measured by a sundial.

Calculation of the Sun’s Right Ascention

All the angles we have written till now were physical angles that are specified by the product
of a number and an angular unit. This is the case with all dimensional quantities, but angle
is a derived dimension that is normally used in dimensionless form. For example, we write
α = α̃ rad where α is the physical angle and α̃ is its dimensionless equivalent. Now the
arguments of all trigonometric functions must be dimensionless angles; however, in order
to keep from proliferating symbols, we will not write the tilde over the angle symbol, but
understand that all angles that appear in our equations from now on will be dimensionless.
Thus we rewrite Eq (5) by dividing both its numerator and denominator by k�

∆t =
2πt/tY − α

ωE
(6)
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Figure 2: The geometry of the sun’s elliptical orbit relative to a non rotating earth fixed
observer P in the ecliptic plane.

where ωE = 2πn/tY = 2π/tMSD is the angular speed of the earth and α is now the
dimensionless angle corresponding to its physical counterpart divided by k� . Whenever we
express a physical angle in radians, the dimensionless angle is just the numerical factor.

If we consider the right spherical triangle shown in Fig. 1. with sides α and λ and included
angle φ, we find on using the appropriate relations that apply to spherical triangles

tan α = cos φ tan λ (7)

The equation that specifies clock time as a function of the angular location of the sun in its
orbit is

M = E − ε sinE (8)

and is called Kepler’s equation. The angle E, called the eccentric anomaly, is shown in Fig.
2., the angle M = 2π(t − t−)/tY , called the mean anomaly, measures the dimensionless
angular distance from perigee that would be travelled by a uniformly moving (mean) sun
in the given time interval, and ε = (b − a)/a is the eccentricity of the elliptical path. The
eccentric anomaly is not measurable by an observer on the earth, but it is related to the
measurable angle f between the line of apsides and the sun (see Fig. 2.). Of the many
relations between these angles the one that is useful to us is

tan
E

2
=

√
1 − ε

1 + ε
tan

f

2
(9)

Equations (8) and (9) both result from Newton’s analysis of planetary motion.

The final equation that is needed relates λ and f . It is

λ = f + ωg (10)
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and can be verified by comparing Figs. 1. and 2. The four equations, Eqs (7) - (10), specify
the four variables, E, f, λ, and α, as functions of M , along with the parameters φ = 0.40910,
ε = 0.0167, and ωg = 4.9358.

If we note that ωg = 2πt−/ωE , where t− is the time the perigee is passed counting zero
from the vernal equinox, we can write the equation of time, Eq (6), in the form

∆t =
M + ωg − α

ωE
(11)

Using the fact that both ε and φ are small, we can make some approximations that produce
a simple expression for ∆t while still retaining enough accuracy to be useful.

Asymptotic Analysis of the Equation of Time

If we write Eq (8) in the form E = M + ε sinE and account for the fact that ε << 1, an
approximate solution is E ∼ M . This can be improved by iteration, namely by substituting
this approximation into the right hand side. This results in

E ∼ M + ε sinM (12)

This could be improved further by iterating again, but will not be necessary for our purposes.

Equation (9) can also be simplified because ε is small. Solving for f and expanding the ε
function in a power series produces (keeping two terms in ε)

f ∼ 2 tan−1[tan(E/2) + ε tan(E/2)] (13)

This function can itself be expanded in a power series in ε. We get for the first two terms
of this, on recalling that d tan−1 x/dx = 1/(1 + x2),

f ∼ E + ε sinE (14)

Substituting Eq (12) into Eq (14) and keeping only terms linear in ε, we get

f ∼ M + 2ε sinM

This approximation has been known since Kepler’s time; it is called the equation of the
center. Using this result in Eq (10) we find

λ ∼ M + ωg + 2ε sinM (15)

Now on noting that the two term expansion 1 − φ2/2 of cos φ differs from it by about 0.1
percent for its actual value cos φ = 0.40910, we write Eq (7) in the same form as Eq (13)

α ∼ tan−1[tan λ − (φ2/2) tan λ]
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Figure 3: A plot of Eq (18). The abscissa, x/day = t− t−/day, is the number of clock time
mean solar days counted from perigee.

Then the expansion of this is, just as we got in Eq (14)

α ∼ λ − φ2

4
sin(2λ) (16)

Substituting Eq (15) into Eq (16) and retaining only terms linear in ε and φ2, we have when
we put this result into Eq (11)

∆t ∼ −2ε sinM + 0.25 φ2 sin(2M + 2ωg)
ωE

(17)

This is an approximate, but accurate and easily calculable, expression for the equation of
time. Substituting numerical values into Eq (17) produces the numerical equation

∆t

min
∼ 229.18

[
−0.0334 sin

(
2π

365.24
t − t−
day

)
+ 0.04184 sin

(
4π

365.24
t − t−
day

+ 3.5884
)]

(18)

A plot of this function is shown in Fig. 3. It agrees rather well with more exact numerical
solutions.
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